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ABSTRACT
The user’s understanding of information needs and the in-
formation available in the data collection can evolve during
an exploratory search session. Search systems tailored for
well-defined narrow search tasks may be suboptimal for ex-
ploratory search where the user can sequentially refine the
expressions of her information needs and explore alternative
search directions. A major challenge for exploratory search
systems design is how to support such behavior and expose
the user to relevant yet novel information that can be difficult
to discover by using conventional query formulation tech-
niques. We introduce IntentStreams, a system for exploratory
search that provides interactive query refinement mechanisms
and parallel visualization of search streams. The system mod-
els each search stream via an intent model allowing rapid user
feedback. The user interface allows swift initiation of alter-
native and parallel search streams by direct manipulation that
does not require typing. A study with 13 participants shows
that IntentStreams allow better support for branching behav-
ior compared to a conventional search system.
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INTRODUCTION
Exploratory search activities confront users with problems in
formulating queries and identifying directions for informa-
tion exploration. Studies show that searchers tend to perform
more than one task simultaneously: approximately 75% of
submitted queries involve a multitasking activity [22, 21].
Users engage in multitask search with and without parallel
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browsing, but parallel browsing is a common activity and
more prevalent than linear browsing. In parallel browsing,
also called branching [13], users visit web pages in multiple
concurrent threads, for example, by opening multiple tabs or
windows in web browsers [14]. Branching in browsing has
been studied extensively [6], but little has been done to sup-
port nonlinear and parallel browsing. Recent visual search
user interfaces have shown the effectiveness of interacting vi-
sually with query elements, however, there are no solutions
to support fluid branching and parallel search.

We introduce IntentStreams, a system supporting parallel
browsing and branching during search without the need to
open new tabs. It presents parallel streams of searches, where
each stream shows a list of resulting documents and key-
words, and a display of the underlying queries as keywords
representing the search intent of the stream. New streams are
initiated by the user, where the search intent of a new stream
is initialized by typing a traditional query or by dragging key-
words available in any of the streams. In each stream, in addi-
tion to the user-chosen keywords, the system proposes other
relevant keywords and orders them vertically by their pre-
dicted relevance. The users can change the relative relevance
of keywords in the query intent of each stream and branch
new streams by simply dragging keywords. IntentStreams
was tested using 25 million news articles crawled from public
news sources in a comparative study with 13 subjects.

The experimental results show that IntentStreams better sup-
ports parallel search and branching behavior when compared
to a conventional search system.

Exploratory search is commonly distinguished from lookup
search and has been described as combining exploratory
browsing and focused searching [23, 5]. These and other
information seeking frameworks [23, 27] partially overlap,
emphasizing different aspects but similarly trying to charac-
terise iterative sense making and refinement of search intents.
As a response, personalization techniques have been devel-
oped to support query formulation and relevance feedback.
Several techniques exist for supporting query formulation or
for processing results to help re-rank, filter [31] or expand
the query [8, 26]. For example, relevance feedback [16] and
query or term suggestions [17] can be effective in short-term
navigational search, but give limited support for exploratory



search. However, increasing evidence in information retrieval
research suggests relevance feedback in exploratory search
often leads to a context trap where after a few iterations of
feedback users have specified their context so strictly the sys-
tem is unable to propose anything new [12, 23].

Visual search interfaces. Recently, search systems use vi-
sualization of the resulting information for faster relevance
judgment and effective feedback [11, 15, 20, 24, 32]. Several
approaches to visualize results have been explored, including
multiple linked lists, scatter plots, graphs and their combina-
tions [30, 20]. Such visual search systems are distinguished
from traditional query composition ones through their em-
phasis on rapid filtering to reduce result sets, progressive re-
finement of search parameters, continuous reformulation of
goals, and visual scanning to identify results [1]. Visual ap-
proaches provide better support for exploration in a variety of
ways: supporting sense making by incrementally and inter-
actively exploring the network of data [7], showing how vi-
sualization supports user involvement in the recommendation
providing rationale behind suggested items [34], visualizing
relations of different queries and result sets [2], supporting
entity search on touch devices [18]. Recent work shows how
users can view and manipulate their search intent models pro-
vided by the system [2, 3, 29, 9, 28]. However, there is still a
lack of solutions that specifically address branching behavior
while supporting query formulation.

INTENTSTREAMS
A user performing exploratory search typically needs to steer
the exploration by query refining or reformulating as she
makes better sense of the information space. We identified
two challenges impairing a proper steering support:

1. Supporting information comparison from several queries:
Traditional search systems show one set of results at a time.
To compare information from distinct queries, one must rely
on memory or complicated browser windows arrangements.

2. Formulating queries in unknown areas: Exploratory search
tasks usually require the user to iteratively formulate queries
in a field she is unfamiliar with. To progress with the search,
the used needs to go through long lists of results with low
information gain to acquire new terms and notions to refor-
mulate the query.

We tackle these challenges through a combination of a user
interface supporting parallel search streams, and user intent
modeling.

The User Interface
IntentStreams provides a unique horizontally scrollable
workspace divided in two areas: the keywords area at the
bottom and the results area on top (Figure 1). By clicking
the workspace, the user is prompted to type a first query. The
system returns a list of relevant documents in the results area
and a set of related keywords in the keywords area. Keywords
are positioned vertically by weight and horizontally by topic
proximity. The vertical arrangement is called a stream and
can be easily manipulated, modified and refreshed. The con-
tent of a document can be seen by clicking the title. A click

and hold on a document highlights keywords directly related
to it. A click and hold on a keyword highlights related docu-
ments. By moving keywords vertically, the user can change
their weight; by hitting the refresh button, the stream then
updates and presents a new set of documents and keywords.
New parallel streams can be created by clicking next to an
existing stream and typing a new query, or simply by drag-
ging a keyword outside of its stream. Since the workspace is
horizontally scrollable, the amount of parallel streams a user
can create is limited only by computer memory. The amount
of parallel streams that can be shown simultaneously is deter-
mined by the display resolution. Streams can be dragged and
rearranged. A button lets the user delete streams.

Interactive Intent Model
For each search stream, the interactive intent model is similar
to the model in a previous non-parallel system [29] and has
two parts: a model for retrieval of documents, and a model
for estimating the user’s search intent (relevance of keywords
to the user’s information need). We describe both below.

Document retrieval model. For each stream, we estimate a
relevance ranking where documents are ranked by their prob-
ability given the intent model for the stream. We use a un-
igram language model. The intent model yields a vector v̂
with a weight v̂i for each keyword ki. The v̂ is treated as
a sample of a desired document. Documents dj are ranked
by probability to observe v̂ as a sample from the language
model Mdj of dj . Maximum likelihood estimation yields
P̂ (v̂|Mdj ) =

∏|v̂|
i=1(P̂mle(ki|Mdj ))

v̂i . We regularize prob-
abilities P̂mle(ki|Mdj ) in dj towards overall keyword pro-
portions in the corpus by Bayesian Dirichlet smoothing. In
each stream the dj are ranked by αj = P̂ (v̂|Mdj ). To expose
the user to more novel documents we sample a document set
from the ranking and show them in rank order. As in [9, 29]
we use Dirichlet Sampling based on the αj , and favor doc-
uments whose keywords got positive feedback by increasing
their αj [10].

User intent model. For each stream, the intent model esti-
mates relevance of keywords from feedback to keywords. For
a stream launched by a typed query, we use the query with
weight 1 as the initial intent model; for a stream launched by
dragging a keyword we use the keyword with weight 1. The
user gives feedback as relevance scores ri ∈ [0, 1] for a subset
of J keywords ki, i = 1, . . . , J in the stream; ri = 1 means
ki is highly relevant and the user wishes to direct the stream
in that direction, and ri = 0 means ki is of no interest.

Let ki be binary n × 1 vectors telling which of the n docu-
ments ki appeared in; to boost documents with rare keywords
we convert the ki to tf-idf representation. We estimate the
expected relevance ri of a keyword ki as E[ri] = k>i w. The
vector w is estimated from user feedback by the LinRel al-
gorithm [4]. In each search iteration, let k1, . . . , kp be the
keywords for which the user gave feedback so far, let K =
[k1, . . . ,kp]

> be the matrix of their feature vectors, and let
rfeedback = [r1, r2, . . . , rp]

> be their relevance scores from
the user. LinRel estimates ŵ by solving rfeedback = Kw,
and estimates relevance score for each ki as r̂i = k>i ŵ .



Figure 1. a. The first query (in this case mobile phone”) returns a search stream composed of news articles most relevant to the query, as well as a set
of most relevant keywords extracted from a larger set of related articles. b. The user can modify the weight of the keywords by sliding them vertically,
after which the stream will refresh, updating articles and keywords accordingly. If dropped outside their initial stream, keywords can either trigger a
new search stream or be passed to an already existing parallel stream.

To expose the user to novel keywords, in each stream we show
keywords ki not with highest r̂i, but with highest upper con-
fidence bound for relevance, which is r̂i+ασi, where σi is an
upper bound on standard deviation of r̂i, and α > 0 is a con-
stant for adjusting the confidence level. In each iteration, we
compute si = K(K>K+λI)−1ki where λ is a regularization
parameter, and show the ki maximizing s>i r

feedback+ α
2 ‖si‖

representing estimated search intent. We optimize horizontal
positions of the shown ki by dimensionality reduction [33];
ki get similar positions if their relevance estimate changes
similarly with respect to a set of additional feedback.

EVALUATION
We evaluated the system to find out if and how IntentStreams
supports parallel browsing and branching behavior. In-
tentStreams was compared against a baseline system with an
interface similar to a traditional Google search interface. Our
hypothesis was that, compared to the baseline, IntentStreams
generates (1.) more parallel streams, (2.) more revisits, and
(3.) more branches. We used the following metrics: num-
ber of parallel streams, number of revisits, and number of
branches. In the baseline, the number of parallel streams de-
notes the number of tabs opened, a revisit indicates returning
to an already open tab, and a branch denotes a query updated
after a revisit. In IntentStreams, a revisit occurs when a user
performs certain activities (opening an article, weight change)
on a previously created stream. A branch occurs when a new
stream is created from an existing one. That includes both
creating a new query by dragging a keyword or updating the
existing stream by modifying the weights of its keywords.

Method
We evaluated the system with 13 volunteers (4 female). The
participants’ age ranged from 19 to 36 with mean of 28.4
(SD = 4.05). Their levels of education were: 8% PhD,
46% Master, 38% Bachelor, 8% High School. Each partic-
ipant received two movie tickets for their participation. We
used a within-subject design, where participants were asked
to perform two tasks, one with IntentStreams and one with
the baseline. We counterbalanced by changing the order in

which the two tasks were performed and the order in which
the two systems were used.

The task was set in an essay writing scenario and formulated
as follows: You have to write an essay on recent developments
of X where you have to cover as many subtopics as possible.
You have 20 minutes to collect the material that will provide
inspiration for your essay. You have additional 5 minutes to
write your essay. The two tasks performed by the participants
covered two topics: (1.) NASA, and (2.) China Mobile.

Experiments were run in a laboratory on a laptop with OS
X operating system. Each participant signed a consent form.
To determine the eligibility, we asked candidates how famil-
iar they were with each chosen topic on a 1-5 scale, where
1 means “no knowledge” and 5 means “expert knowledge”.
Only those with a score lower than 3 were considered eli-
gible. Before the experiment, participants received detailed
instructions and performed a 5-minute training session.

To evaluate the system, we connected it to a news repository
of English language editorial news articles crawled from pub-
licly available news sources from September 2013 to March
2014. The database contains more than 25 million docu-
ments. The documents were originally collected for mon-
itoring media presence of numerous interested parties, and
hence the collection has wide topical coverage. All the docu-
ments were preprocessed by the Boilerpipe tool [19] and the
keyphrases were extracted with the Maui toolkit [25].

The baseline system was connected to the same news repos-
itory. In the baseline system, users could type queries and
receive a list of relevant news articles. To start a new parallel
query, a new tab had to be opened.

FINDINGS
Table 1 shows the results of the log analysis. In the 20–
minute long sessions, IntentStreams on average generated
7.84 more queries (SD = 7.27), 6.38 more parallel streams
(SD = 4.03), 4.54 more revisits (SD = 4.52), and 3.62
more branches (SD = 4.01). A paired t-test indicates that all
those differences are statistically significant (p < 0.01).



Figure 2. Example of branching behavior from the case study: top - Baseline; bottom - IntentStreams.

Parallel search supported in IntentStreams. Results show
that users created more parallel streams than opened new tabs.
While the system allows the creation of parallel streams, the
users revisit earlier ones consistently, which denotes parallel
search behavior. In fact, revisits are higher in the IS condition.

Branching supported in IntentStreams. In IntentStreams,
more queries and parallel streams were created through
branching. Figure 2 presents a visual representation of a par-
ticipant’s search behavior, showing the difference between
the linear search behavior in the baseline and the more ar-
ticulated search behavior in IntentStreams.

Further, IntentStreams supports more exploration. In IS,
more exploration of the information space was done as can
be seen from the higher number of queries.

CONCLUSIONS
We introduced the IntentStreams system for exploratory
search of news based on parallel visualization of smart search
streams. It models each search stream by an intent model, al-
lows rapid tuning by feedback to keywords, and allows rapid
initiation of new streams by keyword interaction without typ-
ing. Initial experiments show that users take advantage of
the rich parallel search opportunities and engage in much
stronger parallel browsing and branching behavior than in a
traditional system.

This is an important finding as current browsing and search-
ing behavior is already characterized by multitask search (in
the same query field users alternate tasks [22, 21]), parallel
browsing (users browse on parallel tabs or windows [14]), and
engage in branching (a new tab or window is created from a
link or result of a previous window or tab [13]). Branching

Table 1. Comparison between IntentStreams (IS) and the baseline (BL).
The number of queries, parallel streams, revisits, and branches, for each
participant P1,...,P13.

queries par. streams revisits branches
BL IS BL IS BL IS BL IS

P1 5 5 2 5 0 7 0 1
P2 5 4 1 2 1 0 1 0
P3 7 17 1 12 1 6 1 4
P4 9 11 1 6 0 2 0 2
P5 14 18 1 12 0 9 0 7
P6 1 8 1 5 0 0 0 0
P7 12 18 7 14 5 7 2 3
P8 22 26 3 12 6 15 1 8
P9 6 18 6 12 4 4 0 0

P10 8 11 7 11 6 5 0 0
P11 8 21 7 11 7 12 0 8
P12 16 35 11 14 3 14 1 9
P13 3 26 3 18 0 11 0 11

has been shown to be more important in informational brows-
ing than navigational search [14]. The approach proposed in
IntentStreams can be incorporated into other search interfaces
to provide an effective way to branch search.
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